Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Safflorite, (Co,Ni,Fe)As ${ }_{2}$, isomorphous with marcasite

Hexiong Yang,* Robert T. Downs and Carla Eichler

Department of Geosciences, University of Arizona, 1040 E. 4th Street, Tucson, AZ 85721-0077, USA
Correspondence e-mail: hyang@u.arizona.edu
Received 29 July 2008; accepted 18 August 2008
Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{As}-\mathrm{As})=0.001 \AA$; some non -H atoms missing; R factor $=0.026 ; w R$ factor $=0.061$; data-to-parameter ratio $=$ 19.5.

Safflorite, a naturally occurring cobalt-nickel-iron diarsenide $(\mathrm{Co}, \mathrm{Ni}, \mathrm{Fe}) \mathrm{As}_{2}$, possesses the marcasite-type structure, with cations ($M=\mathrm{Co}+\mathrm{Ni}+\mathrm{Fe}$) at site symmetry $2 / m$ and As anions at m. The $M \mathrm{As}_{6}$ octahedra share two edges, forming chains parallel to c. The chemical formula for safflorite should be expressed as $(\mathrm{Co}, \mathrm{Ni}, \mathrm{Fe}) \mathrm{As}_{2}$, rather than the end-member format CoAs_{2}, as its structure stabilization requires the simultaneous interaction of the electronic states of Co, Ni, and Fe with $\mathrm{As}_{2}{ }^{2-}$ dianions.

Related literature

For related literature, see: Anawar et al. (2003); Carlon \& Bleeker (1988); Darmon \& Wintenberger (1966); Ennaciri et al. (1995); Goodenough (1967); Grorud (1997); Hem et al. (2001); Holmes (1947); King (2002); Kjekshus (1971); Kjekshus et al. (1974, 1979); Lutz et al. (1987); Makovicky (2006); O’Day (2006); Ondrus et al. (2001); Palenik et al. (2004); Petruk et al. (1971); Radcliffe \& Berry (1968, 1971); Reich et al. (2005); Robinson et al. (1971); Swanson et al. (1966); Tossell (1984); Tossell et al. (1981); Vaughan \& Rosso (2006); Wagner \& Lorenz (2002).

Experimental

Crystal data

```
As
M
Orthorhombic, Pnnm
a=5.0669 (6) A
b=5.8739 (7) \AA
c=3.1346 (4) \AA
```


Data collection

```
Bruker APEX2 CCD area-detector diffractometer
Absorption correction: multi-scan (TWINABS; Sheldrick, 2007)
\(T_{\text {min }}=0.179, T_{\text {max }}=0.274\)
\((\) expected range \(=0.114-0.174)\)
```

 \(V=93.29(2) \AA^{3}\)
 $Z=2$
Mo $K \alpha$ radiation
$\mu=43.75 \mathrm{~mm}^{-1}$
$T=293$ (2) K
$0.06 \times 0.05 \times 0.04 \mathrm{~mm}$

Refinement

$\begin{array}{ll}R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.025 & 13 \text { parameters } \\ w R\left(F^{2}\right)=0.061 & \Delta \rho_{\max }=1.44 \mathrm{e}^{-3} \\ S=0.91 & \Delta \rho_{\min }=-1.82 \mathrm{e}^{-3}\end{array}$

Data collection: APEX2 (Bruker, 2003); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XtalDraw (Downs \& Hall-Wallace, 2003); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

The authors gratefully acknowledge the support of this study from the RRUFF project and NSF (EAR-0609906) for the study of bonding systematics in sulfide minerals.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: MG2054).

References

Anawar, H. M., Akai, J., Komaki, K., Terao, H., Yoshioka, T., Ishizuka, T., Safiullah, S. \& Kato, K. (2003). J. Geochem. Expl. 77, 109-131.
Bruker (2003). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2005). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Carlon, C. J. \& Bleeker, W. (1988). Geol. Mijnbouw 67, 279-292.
Darmon, R. \& Wintenberger, M. (1966). Bull. Soc. Fr. Minér. Cristal. 89, 213215.

Downs, R. T. \& Hall-Wallace, M. (2003). Am. Mineral. 88, 247-250.
Ennaciri, A., Barbanson, L. \& Touray, J. C. (1995). Mineralium Deposita 30, 75-77.
Goodenough, J. B. (1967). Solid State Commun. 5, 577-580.
Grorud, H. F. (1997). Nor. Geol. Tidsskr. 77, 31-38.
Hem, S. R., Makovicky, E. \& Gervilla, F. (2001). Can. Mineral. 39, 831-853.
Holmes, R. J. (1947). Geol. Soc. Amer. Bull. 58, 299-392.
King, R. J. (2002). Geol. Today, 18, 72-75.
Kjekshus, A. (1971). Acta Chem. Scand. 25, 411-422.
Kjekshus, A., Peterzens, P. G., Rakke, T. \& Andresen, A. F. (1979). Acta Chem. Scand. A33, 469-480.
Kjekshus, A., Rakke, T. \& Andresen, A. F. (1974). Acta Chem. Scand. 28, 9961000.

Lutz, H. D., Jung, M. \& Waschenbach, G. (1987). Z. Anorg. Allg. Chem. 554, 87-91.
Makovicky, E. (2006). Rev. Miner. Geochem. 61, 7-125.
O'Day, P. A. (2006). Elements, 2, 77-83.
Ondrus, P., Vavrin, I., Skala, R. \& Veselovsky, F. (2001). N. Jahr. Miner. Monatsh. 2001, 169-185.
Palenik, C. S., Utsunomiya, S., Reich, M., Kesler, S. E. \& Ewing, R. C. (2004). Am. Mineral. 89, 1359-1366.
Petruk, W., Harris, D. C. \& Stewart, J. M. (1971). Can. Mineral. 11, 150-186.
Radcliffe, D. \& Berry, L. G. (1968). Am. Mineral. 53, 1856-1881.
Radcliffe, D. \& Berry, L. G. (1971). Can. Mineral. 10, 877-881.
Reich, M., Kesler, S. E., Utsunomiya, S., Palenik, C. S., Chryssoulis, S. \& Ewing, R. C. (2005). Geochim. Cosmochim. Acta, 69, 2781-2796.
Robinson, K., Gibbs, G. V. \& Ribbe, P. H. (1971). Science, 172, 567-570.
Sheldrick, G. M. (2007). TWINABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Swanson, H. E., Morris, M. C. \& Evans, E. H. (1966). Natl Bur. Stand. Monogr. 25, 10-11.
Tossell, J. A. (1984). Phys. Chem. Miner. 11, 75-80.
Tossell, J. A., Vaughan, D. J. \& Burdett, J. K. (1981). Phys. Chem. Miner. 7, 177-184.
Vaughan, D. J. \& Rosso, K. M. (2006). Rev. Miner. Geochem. 61, 231-264.
Wagner, T. \& Lorenz, J. (2002). Mineral. Mag. 66, 385-403.

supplementary materials

Acta Cryst. (2008). E64, i62 [doi:10.1107/S1600536808026688]

Safflorite, $(\mathbf{C o}, \mathbf{N i}, \mathrm{Fe}) \mathrm{As}_{2}$, isomorphous with marcasite

H. Yang, R. T. Downs and C. Eichler

Comment

Minerals in the $\mathrm{FeAs}_{2}-\mathrm{NiAs}_{2}-\mathrm{CoAs}_{2}$ system include löllingite FeAs_{2}, rammelsbergite NiAs_{2}, pararammelsbergite NiAs_{2}, clinosafflorite CoAs_{2}, and safflorite CoAs_{2}. These diarsenide minerals, together with $\mathrm{Fe}-\mathrm{Ni}-\mathrm{Co}$ disulfides and sulfarsenides, are commonly found in complex $\mathrm{Co}-\mathrm{Ni}$ —As ore deposits, such as Håkansboda, Sweden (Carlon \& Bleeker, 1988), the Cobalt District, Ontario (Petruk et al., 1971), Bou-Azzer, Morocco (Ennaciri et al., 1995), Modum, Norway (Grorud, 1997), and Spessart, Germany (Wagner \& Lorenz, 2002). When precipitated from hydrothermal solutions, these minerals can incorporate considerable amounts of trace metals, especially so-called "invisible" gold (e.g., Palenik et al., 2004; Reich et al., 2005). Under oxidizing conditions, however, they can release significant amounts of arsenic into natural water and soils, in some cases producing serious arsenic poisoning and contamination (King, 2002; Anawar et al., 2003; O'Day, 2006). Therefore, the crystal structures and bonding models of $\mathrm{Fe}-\mathrm{Ni}-\mathrm{Co}$ disulfides, diarsenides, and sulfarsenides have been a subject of extensive experimental and theoretical studies (Vaughan \& Rosso, 2006; Makovicky, 2006, and references therein)

The crystal structures of all minerals, except safflorite, in the $\mathrm{FeAs}_{2}-\mathrm{NiAs}_{2}-\mathrm{CoAs}_{2}$ system have been determined. Topologically, löllingite FeAs_{2} (Kjekshus et al., 1979; Lutz et al., 1987; Ondrus et al., 2001) and rammelsbergite NiAs_{2} (Kjekshus et al., 1974, 1979) possess the marcasite $\left(\mathrm{FeS}_{2}\right)$-type structure with space group Pnnm, whereas clinosafflorite CoAs_{2} (Darmon \& Wintenberger, 1966; Kjekshus, 1971) is isostructural with the modified marcasite-type structure of arsenopyrite (FeAsS) with space group $P 2_{1} / c$ (Hem et al., 2001; Makovicky, 2006). From the unit-cell dimensions measured from X-ray diffraction, safflorite was assumed to be isotypic with marcasite (Holmes, 1947; Radcliffe \& Berry, 1968, 1971). Chemical analyses of various natural and synthetic samples reveal that Pnnm safflorite always contains some amounts of Fe and Ni , whereas materials with $80-100 \%$ (mole) CoAs 2 crystallize in monoclinic $P 2_{1} / c$ symmetry (Holmes, 1947; Swanson et al., 1966; Radcliffe \& Berry, 1971). This study presents the first structure determination of safflorite based on singlecrystal X-ray diffraction data.

Safflorite is isomorphous with marcasite. Each cation ($M=\mathrm{Co}, \mathrm{Ni}$, and Fe) at site symmetry $2 / m$ is octahedrally coordinated by six anions (As) at site symmetry m and each anion is tetrahedrally bonded to another anion (forming As-As dianion units) plus three M cations. The MAs_{6} octahedra share two edges, forming chains parallel to \boldsymbol{c}, and two vertices with adjacent chains (Fig. 1). The average M—As bond distance ($2.360 \AA$) is identical to that in clinosafflorite (Kjekshus, 1971), but slightly shorter than that in löllingite (2.379 A) (Kjekshus et al., 1979; Lutz et al., 1987) or rammelsbergite (2.378 \AA) (Kjekshus et al., 1979). Notably, as the d-orbital electrons in M cations increase from $\mathrm{Fe}(d=6)$ in löllingite to $\mathrm{Co}(d$ $=7)$ in safflorite, and $\mathrm{Ni}(d=8)$ in rammelsbergite, the $\mathrm{M}-M$ separation along the chain direction increases significantly from 2.882 to 3.134 , and $3.545 \AA$, respectively, while the As-As edge length shared by the two M octahedra concomitantly decreases from 3.808 to 3.547 , and $3.219 \AA$. The octahedral distortion, measured by the octahedral angle variance (OAV) and quadratic elongation (OQE) (Robinson et al., 1971), decreases. The OAV and OQE values are 92.87 and 1.0265 for $\mathrm{FeAs}_{6}, 21.04$ and 1.0058 for CoAs_{6}, and 16.22 and 1.0049 for NiAs_{6}.

supplementary materials

The variation of the $M-M$ separation with the number of d-orbital electrons in marcasite-type disulfides, diarsenides, and sulfarsenides has been a matter of discussion (see Vaughan \& Rosso, 2006 for a thorough review). Theoretical calculations based on molecular orbital and band models predict that, due to the interaction between the $3 d \sigma\left(e_{g}\right)$ orbitals of M^{2+} and the π_{b} orbitals of $\mathrm{As}_{2}{ }^{2-}$, the $\mathrm{M}-\mathrm{As}-M$ angle subtending the $\mathrm{M}-M$ separation across the shared octahedral edge should be substantially smaller for FeAs_{2} than for CoAs_{2} and NiAs_{2}, resulting in the so-called "compressed marcasite-type" structure (Tossell et al., 1981; Tossell, 1984). Indeed, this angle is 74° in FeAs_{2} löllingite (Lutz et al., 1987), but 83° in (Co,Ni,Fe)As2 safflorite and 96° in rammelsbergite (Kjekshus et al., 1979). It is intriguing to note that the end-member CoAs_{2} has been found to only crystallize in the arsenopyrite-type structure ($P 2_{1} / c$) (Holmes, 1947; Swanson et al., 1966; Radcliffe \& Berry, 1971), rather than the marcasite-type structure (Pnnm). This observation may be explained by the existence of an unpaired electron occupying one of the π_{b} orbitals, which splits into a lower-energy filled band and a higher-energy empty band (Goodenough, 1967), thus resulting in the symmetry reduction from Pnnm to $P 2_{1} / c$. In other words, the presence of some $\mathrm{Ni} / \mathrm{Fe}$ in place of Co appears to be an essential requirement for the CoAs_{2} system to crystallize in the Pnnm symmetry. The pure system will otherwise be stabilized energetically in the clinosafflorite structure.

Another outstanding feature of the safflorite structure is the prominent anisotropic displacement ellipsoid of the M cation, the $\mathrm{U}_{11}: \mathrm{U}_{22}: \mathrm{U}_{33}$ ratio being approximately $3: 1: 9$, with the ellipsoid axial directions roughly parallel to the unit cell axes. This ratio can be compared to the differences of three unit-cell dimensions between FeAs_{2} löllingite and NiAs_{2} rammelsbergite $\left[\left(a_{\mathrm{Lol}}-a_{\mathrm{Ram}}\right) / a_{\mathrm{Lol}}:\left(b_{\mathrm{Lol}}-b_{\text {Ram }}\right) / b_{\mathrm{Lol}}:\left(c_{\mathrm{Lol}}-c_{\mathrm{Ram}}\right) / c_{\text {Lol }}\right]$ (Kjekshus et al., 1974, 1979; Lutz et al., 1987), which is about 3:1:8. Accordingly, the marked anisotropy of the displacement parameters of the M cation in safflorite is interpreted as a consequence of positional disorder with Fe and Ni occupying apparent different positions, which in turn results from the different interactions of their d-electrons with the $\mathrm{As}_{2}{ }^{2-}$ dianions.

Experimental

The safflorite specimen used in this study is from Timiskaming County, Ontario, Canada, and is in the collection of the RRUFF project (deposition No. R070611; http://rruff.info), donated by James Shigley. The average chemical composition (15 point analyses), $\left(\mathrm{Co}_{0.61} \mathrm{Ni}_{0.22} \mathrm{Fe}_{0.17}\right)_{\Sigma=1}\left(\mathrm{As}_{1.99} \mathrm{~S}_{0.01}\right)_{\Sigma=2}$, was determined with a CAMECA SX50 electron microprobe (http://rruff.info).

Refinement

Due to the similar X-ray scattering powers for Co, Ni, and Fe , all cations were assumed to be Co and their site occupancies were not determined during the refinement. All crystals examined were twinned, with $\{011\}$ as twin plane. The structure refinements were performed based on X-ray diffraction data collected from a twinned crystal, which were processed with TWINABS (Sheldrick, 2007). The ratio of two twin components is $0.73: 0.27$. The highest residual peak in the difference Fourier maps was located at $(0.133,0.370,0.256), 0.85 \AA$ from atom As, and the deepest hole at $(0.133,0.473,0), 0.69$ \AA from As.

Figures

Fig. 1. Crystal structure of safflorite, with displacement ellipsoids drawn at the 99.9% probabiliy level. The $M(=\mathrm{Co}+\mathrm{Ni}+\mathrm{Fe})$ cations (yellow spheres) are situated in octahedra coordinated by six As atoms (pink spheres).

Cobalt-iron-nickel diarsenide

Crystal data

$\mathrm{As}_{1.99} \mathrm{Co}_{0.61} \mathrm{Fe}_{0.17} \mathrm{Ni}_{0.22} \mathrm{~S}_{0.01}$	$F_{000}=168$
$M_{r}=207.77$	$D_{\mathrm{x}}=7.396 \mathrm{Mg} \mathrm{m}^{-3}$
	Mo Ko radiation
Orthorhombic, Pnnm	$\lambda=0.71073 \AA$
Hall symbol: -P 22 n	Cell parameters from 153 reflections
$a=5.0669(6) \AA$	$\theta=5.0-31.4^{\circ}$
$b=5.8739(7) \AA$	$\mu=43.75 \mathrm{~mm}^{-1}$
$c=3.1346(4) \AA$	$T=293(2) \mathrm{K}$
$V=93.29(2) \AA^{3}$	Granular, black
$Z=2$	$0.06 \times 0.05 \times 0.04 \mathrm{~mm}$

Data collection

Bruker APEX2 CCD area-detector
diffractometer
Radiation source: fine-focus sealed tube
Monochromator: graphite
$T=293(2) \mathrm{K}$
φ and ω scan
Absorption correction: multi-scan
(TWINABS; Sheldrick, 2007)
$T_{\text {min }}=0.179, T_{\text {max }}=0.274$
1232 measured reflections
254 independent reflections
227 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.041$
$\theta_{\text {max }}=36.4^{\circ}$
$\theta_{\text {min }}=5.3^{\circ}$
$h=-8 \rightarrow 7$
$k=-8 \rightarrow 9$
$l=-5 \rightarrow 5$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.025$
$w R\left(F^{2}\right)=0.061$
$S=0.91$

Secondary atom site location: difference Fourier map

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0428 P)^{2}\right]
$$

where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\max }=1.44 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-1.82 \mathrm{e} \AA^{-3}$

supplementary materials

254 reflections
Extinction correction: SHELXL,
$\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$
13 parameters
Extinction coefficient: 0.016 (6)
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} / U_{\text {eq }}$
M	0.0000	0.0000	0.0000	$0.0130(2)$
As	$0.18637(9)$	$0.36589(7)$	0.0000	$0.01033(17)$

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
M	$0.0090(4)$	$0.0033(4)$	$0.0267(4)$	$0.0001(3)$	0.000	0.000
As	$0.0140(3)$	$0.0046(2)$	$0.0124(2)$	$-0.00002(14)$	0.000	0.000

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

M-As	2.3475 (5)	$\mathrm{M}-\mathrm{As}^{\text {iii }}$	2.3669 (4)
$\mathrm{M}-\mathrm{As}{ }^{\text {i }}$	2.3475 (5)	$\mathrm{M}-\mathrm{As}^{\text {iv }}$	2.3669 (4)
$\mathrm{M}-\mathrm{As}^{\text {ii }}$	2.3669 (4)	$\mathrm{M}-\mathrm{As}^{\text {v }}$	2.3669 (4)
As-M-As ${ }^{\text {ii }}$	88.016 (9)	$\mathrm{M}-\mathrm{As}-\mathrm{M}^{\text {vi }}$	125.085 (13)
As ${ }^{\text {i }}$-M-As ${ }^{\text {ii }}$	91.984 (9)	$\mathrm{M}^{\mathrm{vi}}-\mathrm{As}-\mathrm{M}^{\mathrm{vii}}$	82.931 (17)
As ${ }^{\text {ii }}-\mathrm{M}-\mathrm{As}^{\text {iv }}$	82.931 (17)	M-As-As ${ }^{\text {viii }}$	106.12 (3)
As ${ }^{\text {iii }}-\mathrm{M}-\mathrm{As}{ }^{\text {iv }}$	97.069 (17)	$\mathrm{M}^{\text {vi }}$-As-As ${ }^{\text {viii }}$	107.599 (2)

Symmetry codes: (i) $-x,-y,-z$; (ii) $x-1 / 2,-y+1 / 2, z-1 / 2$; (iii) $-x+1 / 2, y-1 / 2,-z+1 / 2$; (iv) $x-1 / 2,-y+1 / 2, z+1 / 2$; (v) $-x+1 / 2, y-1 / 2$, $-z-1 / 2$; (vi) $-x+1 / 2, y+1 / 2,-z+1 / 2$; (vii) $-x+1 / 2, y+1 / 2,-z-1 / 2$; (viii) $-x,-y+1,-z$.

Fig. 1

